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Prologue: (First) Glass Problem

Berthier and Ediger, Physics Today (2016)

Credit: Patrick Charbonneau, 2012



Crystal Nucleation

Auer and Frenkel, Nature (2002)

Radius



Frank, Proc. Roy. Soc. A (1952)

Frank: Grandfather of 
Geometrical Frustration

Wikipedia



Geometrical Frustration

FCC)Lattice vs.) IcosahedronTriangular)Lattice
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Geometrical Frustration in 4D

D4 Lattice
IS)NOT)

Simplex)Based

The 24-cell (uniquely) comes to the mind
of any good schoolchild!

4<Simplex

Musin (2004); Pfender and Ziegler, Notices AMS (2004)



2D Packing

Simple)Square Rotated)Simple)Square



3D Packing

Simple)Cubic Body<Centered)Cubic



4D Packing

Simple)Hypercubic D4
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Nucleation Barrier

Cluster)Size

In 3D, the surface tension 
is 2-3 times smaller for similar 

supersaturations!

van Meel, Frenkel, Charbonneau, PRE (2009)



How frustrated is it?

Laird and Davidchack, J. Phys. Chem. C (2007)
van Meel, Charbonneau, Fortini, Charbonneau, PRE (2009)

At fluid-crystal coexistence density



van Meel, Charbonneau, Fortini, Charbonneau, PRE (2009)
Liquid/crystal resemblance vanishes with dimension.

Geometrical Explanation
Bond<order)parameters)à la Steinhardt<Nelson



Conclusion of Prologue
2D is not frustrated. 
• Gives rise to two-step freezing.

3D is somewhat frustrated.
• Monodisperse HS freeze rather easily.
• But icosahedral order is not singular.

4D is truly frustrated.
• Optimally packed cluster matters little.
• “Polytetrahedral” frustration dominates.

High-dimensional liquids form glasses easily.
• =>“Cracking the Glass Problem”

What about simplexes in other contexts?



Nanoparticles in diblock copolymer cylinders
Sanwaria et al., Angew. Chem. 2014

Polystyrene spheres in silicon membrane pores
Tymczenko et al., Adv. Mater. 2008

Fullerenes in carbon nanotubes
Briggs et al., PRL, 2004
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of an amorphous phase at high concentrations (n/n0 ! 3.7). 
Figure 3b plots the fractions of ordered domains of a given 
packing (quantified by the total length of such ordered domains 
relative to the entire length of the assembly/tube, L) as a func-
tion of the normalized particle number n/n0. As seen and in 
agreement with experiments, the fraction of ordered domains 
decreases with increasing n/n0 and is the lowest for structures 
that have voids along the axis of rotation (D3d, gray line and 
D2d, pink line). Interestingly, in previous theoretical studies 
of hard spheres packing in rigid cylinders,[3,23] all large struc-
tures (i.e., those formed in cylinders much wider than particle 
diameter) featured an empty channel along the cylinder’s long 
axis. In our harmonic potential, however, such structures are 
energetically very costly (cf. energies calculated in Figure 3c) 
which can explain why they are of less regular ordering and 

also why for even higher particle numbers, we observe mostly 
glassy states.

We make two additional comments about the monocompo-
nent assemblies. First, at least some structures can be inter-
converted by changing the rotation rate (e.g., in Figure 4a and 
Movies S5, S6, Supporting Information, from D2d into C1 and 
from C1 to D3d by decreasing rotation rate). This phenomenon 
is due to the fact that upon changes in ω, the fluid near the 
tube’s surface and side walls responds first, effectively giving 
rise to transient flows along the tube’s axis (Figure 4b).[30] 
Depending on whether the fluid is accelerated or deceler-
ated, these flows either stretch or compress the beads along 
the axis of rotation, resulting in the change in their packing. 
Interestingly, such transitions are fully reversible when 
the changes in the rotation rates are rapid (on the order of 

Adv. Mater. 2017, 1704274

Figure 2. Monocomponent tubular assemblies. a–e) Representative structures formed by 1.588 mm polypropylene beads immersed in a mixture of 
water and agarose at ω = 2000–3000 rpm. Experimental images are shown in the left column; 3D and cross-sectional cartoons are shown on the right. 
The vertical axis gives the number n of the spheres relative to the number n0 of spheres in a tightly packed single line of length equal to that of the 
tube. f) A phase diagram indicating dominant structures at different values of ω and n/n0. Structures are denoted by different markers corresponding 
to those in panels (a–e). If the assemblies are polymorphic—that is, feature regions of different packing—larger markers correspond to the dominant 
structure. At concentrations higher than n/n0 ≈ 3.0 (dotted line), the assemblies also contain noticeable fractions of amorphous phase. Images of 
structures formed by smaller, g) 500 µm and h) 53 µm (h), particles at ω = 2000–3000 rpm.

Floating particles in a rotating fluid.
Lee et al., Adv. Mater. 2017

Intro: HS in a cylinder



Pickett et al., PRL, 2000 Mughal et al., PRE, 2012

σ

σ

This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 2505--2514 | 2507

bounds on particle displacements and volume changes are found to
be roughly Drupper

r = Drupper
z = eupper

z = 0.001s, and Drupper
y = eupper

y =
0.001 radians. The overall packing optimization can thus be done
sequentially, meaning that the optimal solution for a given step is
used as an input for the subsequent one, until convergence is
achieved. Operationally, we accept a solution to have converged
when the difference between two iterations |Dvu| o vtol, where vtol =
10!6s3. Note that because this criterion is independent of the unit
cell size, the final unit cell volume is determined less precisely for
smaller system sizes, but this effect is negligible on the scale of the
figures and the other numerical results reported here.

Recall that for periodic structures, close packing can only be
obtained when N = ncNc, where nc is a positive integer and Nc is
the number of particles in the unit cell. For regimes where
the densest structure is known (and periodic), i.e., at small
diameters, we choose nc Z 3. For the rest of the diameter range,
however, no systematic studies have previously been under-
taken, and only a few structures have been proposed.30,36

Where Nc is not a priori known, we resort to scanning system
sizes with N = 48 to N = 150. If the close packing is actually
periodic with Nc r 150, it is identified properly, and the N that
yields the highest density is an integer multiple of Nc. One can
then check factors of this N to identify Nc. For systems where
the close packed arrangement is not periodic or where Nc 4
150, the algorithm finds the best periodic approximant within
this regime of N.

3 SLP results
Using the SLP method, we identified candidate structures for
HS close packing from D = 2.16s to D = 4.00s. For D r 2.862s,
we reproduce the previously reported results32 (Fig. 1), but we
obtain denser structures than Mughal et al. for 2.862s o D o
2.873s (Fig. 2, inset). This discrepancy is likely due to the
difference in system sizes between the two studies. The structures
obtained for this regime in ref. 32 had unit cells with either N = 7
or 15 particles, while our system size varies from N = 24 to 150,
and the densest structures are found to have 50 r N r 85.

The origin of this strong system size dependence likely lies in the
complex periodicity, i.e., the large Nc of the packings in this
regime, or their potential aperiodicity. (We come back to this
point in Section 4.)

SLP identifies 17 distinct structures and their deformations
over 2.873s r D r 4.00s (Fig. 2). The structures depicted in
Fig. 2 are local maxima in Z(D). Most of the structures in this
regime have two well-defined layers: an outer shell and an inner
core. In structures for which this definition makes geometrical
sense, the outer shell is comprised of particles that are touching
the wall, or nearly so, and which form a corrugated cylinder of
diameter roughly D ! s that contains the particles comprising
the inner core. Many of the outer shells are close packings of
spheres on the inner surface of the cylinder. Hence they can be
separately described using the phyllotactic notation for helices,
(l, m, n), with l = m + n and m 4 n, where l, m and n are the
number of helices, using the three possible helix definitions
(Fig. 3).37 The parameters defining some of these helical outer
shells are listed in Table 1. For simplicity, we denote below
structures with the helix whose height difference, Dz, between
two successive particles within that helix is minimal and Dy is
thus the angular coordinate difference between two successive
particles within that helix (Fig. 3a). Based on these definitions, we
note that lz = (Ns/l)Dz and ly = mod2p((Ns/l)Dy), where Ns is the
number of shell particles in the unit cell.

Intermediate structures can be obtained by continuously
transforming local density maxima. Some are uniform radial
expansions (or compressions) of these structures, accompanied
by a compression (or expansion) in z, while other structures
undergo a line-slip, which is a slip between two helices, keeping
the relative position of the other helices constant.32 Because
a helix can be defined in three different ways (Fig. 3), each
maximal density structure presents six corresponding line-slip
possibilities (two directions for each type of slip), although
helix symmetry can reduce this number.

In the following subsections, we present an overview of
different D regimes over which the packings we obtain share
a number of structural features.

3.1 Structures for D o 2.86r

In this regime, all the structures are periodic and have a simple
mathematical description. Most of them are simple helices.
The last two structures, however, are non-helical and contain
an inner core (Fig. 1). HS close packing for 2.71486s r D r
2.74804s has D5 symmetry with a close packed inner core, and
can be constructed as a packing of spindles of nearly regular
tetrahedra. The optimal structure for 2.74804s r D r 2.8481s
has instead a unit cell of 11 particles – an inner particle
sandwiched between two staggered five-particle rings – that
is reminiscent of a stacking of ferrocene molecules. Note,
however, that neither the inner core nor the outer shell of this
last structure is separately close packed.

3.2 Structures for 2.86r r D o 2.988r

For D Z 2.86s, packings do not have simple analytical descrip-
tions. The competition between the inner core and the outer

Fig. 1 Close packing densities for 2.16s r D r 2.86s. Configurations are
depicted at density maxima. Yellow particles are part of the same helix.
In this regime, the results are in complete agreement with those of ref. 32.
Fig. 2 presents the results for D Z 2.86s.
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Boerdijk-Coxeter helix is present. Other fibrated ones?

Earlier Results



• Periodic cylinder with a twist

• Three types of moves:
A. Displacement particles
B. Change unit cell height
C. Change boundary 

twist

Maximize :      η

Torquato and Jiao, PRE, 2010

Subject to :

Sequential Linear Programming



Mughal et al., PRE, 2012
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Fu, Steinhardt, Zhao, Socolar, Charbonneau, Soft Matter, 2016

Results: Comparison



Region I Region II Region III

Results: Extension



Loose outer shell (gaps between particles), and 
close-packed core.

Region I



Close-packed outer shell and core, with rich interplay.

Region II



Core appears 
quasiperiodic.

Sinking algorithm 
gives many 
quasiperiodic 
structures denser than 
LP structures.

Region II

2512 | Soft Matter, 2016, 12, 2505--2514 This journal is©The Royal Society of Chemistry 2016

either yield a finite sequence or one that exponentially
approaches a value different from unity. Fig. 10 shows rn !
rN as a function of n for the sequence of best approximants,
where rN has been adjusted to get a straight line on the log–log
plot. We find the best fit to be obtained for rN E 1.0043324(1)/
s, which is slightly denser than for a simple stack of spheres on
the cylinder axis, 1/s. The total number of spheres per unit of
cylinder length is thus rs + rN = 8.0169578(1)/s, corresponding
to Z = 0.593849(1), which is denser than Z = 0.593661(1)
obtained from the SLP algorithm, as expected.

For D a 3s, the lack of reflection symmetry in the helical shells
and the presence of line slips complicate the construction of a map
from one core sphere height to the next. We instead perform brute
force numerical computations of the core packing algorithm for
n spheres and take the core density to be rn = n/zn. The core
density, rN, is obtained by fitting the numerical results to eqn (18),
as above. The joint core and shell packing fraction, Z(D), is then
obtained with a resolution of DD = 0.001s (see Fig. 11).

For most values of D, the sinking algorithm gives structures
with a higher packing fraction than the SLP algorithm, but

differences that are typically less than 0.1%, which suggests
that the SLP algorithm performs remarkably well in this
regime. The most significant structural difference between
the two algorithms is observed for 3.003s r D r 3.017s, where
the sinking algorithm identifies structures with a (7, 4, 3) outer
shell, while the SLP algorithm produces a (6, 6, 0) outer shell.
The packing fraction difference between these two structures is
small, but well above our numerical precision. The discrepancy
may thus result from the former structure not being as easily
accessible in the SLP search than the latter for our choice of
algorithmic parameters and initial conditions.

At the level of precision considered for the SLP study (DD =
0.01s), the sinking algorithm is found not to win outright at
three points: D = 3.04s, D = 3.27s, and D = 3.40s (see Table 2).
We find that two distinct mechanisms are at play, which can be
seen through consideration of the linear density ratio between
the SLP and the sinking algorithms separately for the shell, rs,
and for the core, rN (Fig. 11, inset). Interestingly, we find that
rSLP

s /rsink
s r 1 at 3.04s and 3.40s. This indicates that a denser

core is obtained at the expense of having a slightly perturbed
(and less dense) outer shell. At 3.27s, some shell spheres
instead do not touch the cylinder wall (taking over some of
the empty core space), which increases both the shell and the
core densities. (For D = 3.09 ! 3.10s, the SLP also identifies a
denser outer shell than the one used in the sinking algorithm,

Fig. 9 Plot of the nonlinear term in the map from the height of one core
sphere to the next one up, f (a) for D = 3.0s. Note that for the purpose of
this figure we have not taken the fractional part of an+1. Note also the scale
on the vertical axis.

Fig. 10 Infinite-system size extrapolation of the core linear density to
rN for D = 3s from the sinking algorithm fitted to eqn (18).

Fig. 11 Packing results for the SLP (blue circles) and sinking (solid line)
algorithms are in fairly close agreement, but the quasiperiodic phases
identified by the latter are typically denser. The biggest differences are in
the choice of optimal shell morphology around D = 3.01s and D = 3.35s.
The phase sequence for the sinking algorithm is (7, 4, 3), (6, 6, 0), (7, 4, 3),
(6, 6, 0), (7, 5, 2), (7, 6, 1), (8, 4, 4), (8, 5, 3), (7, 7, 0) and (8, 6, 2), from left to
right (separated by dashed lines). The inset shows the shell rSLP

s /rsink
s (red

triangles) and core rSLP
N /rsink

N (blue circles) linear density ratio as a function
of D. See text for details.

Table 2 Density differences between SLP and sinking structures for
points where the former is denser than the latter

D/s (rSLP
s ! rsink

s )s (rSLP
N ! rsink

N )s ZSLP ! Zsink

3.04 !6.4 " 10!6 1.259 " 10!3 9.0 " 10!5

3.27 2.9 " 10!6 4.510 " 10!4 2.8 " 10!5

3.40 !7.9 " 10!3 9.254 " 10!3 7.2 " 10!5
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Region III

Some cross-sections are akin to 
packing of disks in a disk.

This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 2505--2514 | 2509

which is barely smaller than a particle diameter. Hence, for
2.97s o D o 2.988s, although the overall structure remains
dominated by the inner core, the outer shell barely differs from
a close packed, line-slip structure of (7, 4, 3).

3.3 Structures for 2.988r r D r 3.42r

For 2.988s r D, the inner core is sufficiently large to allow core
particles to move freely within an outer shell, thus greatly
reducing their constraint on that shell. Note that the lower
end of this range is smaller than 3s because the close packed
shell for 2.988sr D o 3.000s is a line-slip structure of (7, 4, 3),
for which no six outer particles are ever in the same plane. They
can thus wrap a gapless inner core without difficulty. Close
packed structures from that point on and up to D = 3.42s are
found to almost always form a close packed outer shell,
independent of the inner core. The local density maxima in
Fig. 2 for this regime indeed all correspond to the diameters of
close packed outer shells (Table 1).

Out of the sequence, the structure with a (8, 4, 4) outer shell
is particularly noteworthy. As for all outer shells with m = n = l/2,
this helical structure is achiral – two of the three possible
helical directions are equivalent and Dz = s/2. As a result, the
outer shell consists of straight columns when viewed from the
top of the cylinder. The top view of the (8, 4, 4) outer shell and
its core is thus very similar to the close packing of hard disks in
a circle (Fig. 4a). Two other structures are found to have this
property (Fig. 4b and c), but the structure with the (8, 4, 4) outer
shell is the only one that is close packed. Note that a similar
phenomenon would likely be observed for a structure with a
(10, 5, 5) outer shell were it to be close packed (which it is not).

The case D = 3.00s is also remarkable. The outer shell is then
a close packed structure with staggered six-particle rings, i.e.,

(6, 6, 0). The spacing between two rings is D? ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
p
" 1

p
¼:

0:8556s. Although core particles placed between the planes of
the rings can shift off the cylinder axis, they cannot shift
enough to allow a periodic packing of the core with no gaps
between successive core spheres. This phenomenon illustrates
the difficulty of searching for close packed structures in this
regime. Close packed structures may indeed be quasiperiodic
and thus may not correspond to any finite lz or Nc. In the
present context, a quasiperiodic structure consists of a periodic
shell and a column of core particles with an average vertical
separation that is irrational with respect to the height of the
unit cell of the shell. Our numerical approach then at best
provides a periodic approximant of that structure. In order to
consider this issue more carefully, we present an alternate
algorithm for studying this regime in Section 4.

3.4 Structures for D 4 3.42r

For D 4 3.42s, many of the close packed outer shells are not
observed. Instead of remaining disordered or quasiperiodic,
the inner core then forms a nearly ordered structure, which
imposes many defects on the outer shell. For some of the
packings, the defects are so large that they enable the two
shells to interpenetrate. The structures in this regime are thus

not clearly dominated by any one of the two layers, hence
neither of the two shells is typically close packed. For instance,
of l-particle staggered ring structures, (l, l, 0), only l = 6, 7 and 9
are observed. For l = 6 and 7, the inner core is so small that only
a lightly zig-zagging chain of particles fits within it; for l = 9, the
inner core is large enough that a staggered three-particle ring
structure fits. For l = 8, however, the zig-zagging structure is not
very dense, and a two-particle flat pair does not fit. The packing
structure thus ends up having a completely different organiza-
tion: a dense triple helix inner core and a tortuous outer helical
shell of eight particles.

The competition between the two shells does not only result
in defective compromises, but also yields two novel types of
structures. First, some structures are analogous to three-
dimensional extensions of packing of hard disks in a circle
(Fig. 4b and c). Although the roughly straight columns formed
by these structures give their top view a two-dimensional feel,
they are not simple stacks of these packings. As can be seen in
Fig. 4, projections of particles onto the cylinder base reveal
overlaps. The outer shell is an (imperfect) triangular lattice
rather than a square lattice, and the outer rings are not flat
but form zig-zags. As a result, the same three-dimensional
version fits in a cylinder with a smaller diameter than the
corresponding two-dimensional circle. Second, some structures
cannot be neatly divided into shells. For instance, for 3.55s r
D r 3.61s, although both layers are dense the gap between
them is sufficiently large to allow outer particles to hop back and
forth between the two shells, keeping Z unchanged (Fig. 2 and 4c).

Table 1 indicates that four ten-fold (l = 10) outer shells could
potentially be observed for D r 4.00s. Yet, only one appears in
the phase sequence as the last structure. The other three
structures are missing, because for 3.62s r D r 3.94s the
inner core is just large enough to accommodate a triple helix,

Fig. 4 Comparison between disks in a circle and the top view of spheres
in a cylinder at (a) D = 3.613s38 (circle) and D = 3.25s (cylinder),
(b) D = 3.813s38 (circle) and 3.43s (cylinder), and (c) D = 3.924s39 (circle)
and 3.58s (cylinder). Red particles are hoppers. The cylinder outer shells
consist of straight columns and only the top layer of particles is visible, so
the resulting packings look similar to those of disks in a circle. Note that
because the height of neighboring columns is shifted by 0.5s, the cylinder
diameter is smaller than that of the circle, and projecting particles onto the
cylinder base reveals overlaps.
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• Densest packings rely on different mechanisms in 
different D regimes.

• Some packings might be quasiperiodic.

• Structures are likely very rich until D=10~20σ, where 
the system (likely) reaches the bulk limit (FCC).

• For D=2~4σ, no structure resembles fibrated ones. 
Frustrated 2D ordering dominates 3D (less) frustrated 
ordering.

Summary I



?
Dynamics

Fu, Bian, Shields, Cruz, López, Charbonneau, Soft Matter, 2017

Assembly Dynamics



Mughal et al., PRE, 2012,  Fu et al., Soft Matter, 2016

2 5 7

(7,5,2)

(4,2,2)
(4,4,0)

(5,4,1)

Structural Notation



P increases

Disordered (4,2,2) (4,3,1)

D=2.4σ

Structures Along Compression



Non-monotonicity of the correlation length
around structure crossovers.

(4,2,2) (4,3,1)

Structure Crossovers



Structure Diagram



Equilibrium

Slow compression
(close to equilibrium)

Fast compression
(out of equilibrium)

Helical Self-assembly



(4,3,1)

(4,3,1)

(4,3,1)

(l,m,n)

(l,m+1,n-1)

(l+1,m+1,n)

(l+1,m,n+1)

or

or

The densest
slip wins!

Diffusionless assembly: line slips

+1 -1



D increases

Kinetically favored pathways



Slow compression

Fast compression

Structure diagram revisited

2

0

X



• Facile assembly of helices is controlled by line slips. 
Crossovers without a single line slip are 
(geometrically) frustrated self-assembly processes.

• Almost all equilibrium crossovers are frustrated, 
hence intermediate structures can be skipped under 
fast compressions.

Summary II



Open Questions
• Can polytetraheral order ever win at larger D?

• How frustrated is the assembly of close-packed 
structures at larger D? How long can an 
amorphous solid be kept (meta)stable in quasi-1D?

• What is the impact of imperfections (e.g., 
ellipsoidal cross-section) on cylindrical 
confinement?

• Are (systematic) formal packing proofs possible?



Epilogue: Correlation lengths in q1D models

Simulations show  sharp 
changes of correlation 
length with pressure, for 
smooth equations of 
state.

Possible phase 
transition? (e.g., Yamchi
& Bowles, PRL (2015) 

BUT THM: (q)1D system 
with short-range 
interactions cannot 
undergo phase 
transitions.

What is the proper theoretical explanation?



Y. Hu, L. Fu, and P. Charbonneau, arxiv:1804.00693

Strongly confined q1D 
models of HS are
amenable transfer-matrix 
treatment.

Generalized the 
approach to NNN 
interactions for HS in 
cylinders (D<2").

• Correlation function
!" #, % = '(') − '( +

lim|(0)|→2!" #, % ~4
0|(0)|/67

• Correlation length
8"09 = ln(<=/|<9|)?

Correlation lengths in q1D model



Correlation lengths in q1D model

Crossovers and kinks
are associated with 
changes in ordering.

Y. Hu, L. Fu, and P. Charbonneau, arxiv:1804.00693

straight chain -> zig-zag -> helix



eigenvalue
crossing

eigenvalue
splitting

Correlation lengths in q1D model

• Kinks result from eigenvalue crossing and splitting.
• Complex decay of correlations is associated with eigenvalue conjugation.
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